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Abstract
A numerical transfer-matrix approach and diagonalization technique exploiting
the point-group symmetry are worked out in the framework of quantum
statistical mechanics and group theory as exact simulation tools for application
to thermodynamical properties of finite rings. They are applied to the isotropic
spin models of the high-nuclearity cyclic clusters [Mn(hfac)2NITPh]6 and
Ni12(O2CMe)12(chp)12(H2O)6(THF)6. The microscopic parameters of both
molecules (J/kB = 350 ± 10 K and J/kB = 8.5 ± 0.5 K, respectively, with
g = 2.23 ± 0.01) are then obtained from a fit of the theoretical susceptibility
curves to the experimental results.

Polynuclear clusters provide magnetic materials with a scale intermediate between that of
isolated dimers or trimers and that of bulk magnetic materials [1–5]. These magnetic materials
exhibit features on a mesoscopic scale, so they may show quantum effects coexisting with
classical behaviour and various new properties. Also, large metal-ion clusters are present in
biological systems (e.g. ferritin [1]) and the modelling of their properties is under way. In
addition, large assemblies of spins are interesting as real objects on which to test theoretical
models with a finite number of spins.

Characterization of polynuclear magnetic aggregates remains a challenging task [6, 7].
They have well defined molecular weights and crystal structures [1], allowing quantitative
comparison of experimental results with theory. Unlike other assemblies of small magnetic
particles with size and/or shape distributions, a typical sample of a molecular magnetic
compound is composed of nominally identical non-interacting magnets with a unique set
of chemically determined parameters. They are complex organometallic systems, too difficult
to approach by the ab initio methods applicable to simple metal clusters [8–12].
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The usual way to characterize molecular magnets is by modelling them in terms of spin
Hamiltonians [1]. Polynuclear magnetic clusters are formed by magnetic centres with different
values S of the spin and different geometrical structures. The main difficulty in the theoretical
model calculations is the exponential increase in computational complexity with the number
of spins N . With increasing value of the spin S and the symmetry decreasing due to more
complicated geometrical structure or due to alternation of the value of S or variation of the
value of the interactions, spin model calculations are limited to small systems. Quantitative
interpretations are available only in a few fortuitous cases.

The aim of this paper is to present exact simulation techniques for characterizing quant-
itatively the thermodynamical properties of the high-nuclearity rings [Mn(hfac)2NITPh]6 and
Ni12(O2CMe12(chp)12(H2O)6(THF)6 and to estimate their model parameters. The complexes
are referred to as the supramolecular clusters Mn6 and Ni12, respectively. They have already
undergone a qualitative analysis [2, 4]. Their common feature is the unusual spin S = 12
ground state, a state showing one of the highest spin multiplicities observed for a molecular
species [1, 2, 4].

As to the geometrical structure, the Mn6 molecule contains twelve paramagnetic centres
[1, 4]—namely six manganese (II) S = 5/2 ions and six organic radicals, NITPh, each with
an unpaired S = 1/2 electron. Qualitative theoretical consideration related to the zero-field
susceptibility measurements led to the conclusion that the magnetic properties can be explained
by a strong antiferromagnetic coupling |J | > 250 K [1, 4] between the two types of spin.

The Ni12 cluster [2] is a dodecanuclear metallocyclic complex, which contains a ring of
twelve S = 1 Ni centres. The nickel ions are bridged by intersecting Ni2O2 rings and the
clusters are not subject to significant intermolecular interactions. The measurements of the
effective magnetic moment for T > 4.2 K and subsequent approximate analysis have shown
that the magnetic properties of Ni12 can be explained by a ferromagnetic coupling inside the
ring, estimated as J = 13.5 K [2]. The crystal structure of Ni12 resembles that of decanuclear
[Fe(OMe)2(O2CCH2Cl)]10, known as the ferric wheel [3], displaying interesting quantum
effects in bulk magnetic measurements.

The form of the spin Hamiltonian modelling the system is mainly determined by the
spin of the magnetic carriers and the topology of the molecular structure. It depends also
on the quality of the sample, the temperature and the type of measurement. In the case of
susceptibility measurements performed for the powder sample, it is difficult to fit the data
in order to estimate the anisotropy parameters. For the high-temperature data it is even
impossible. The usual procedure is to establish the magnetic exchange coupling from the
bulk magnetic measurements and then to determine the anisotropy parameters by means of
more refined experiments probing the energy structure. To characterize the finite-temperature
properties of Mn6 and Ni12, we consider the rings in the framework of the isotropic spin model
Hamiltonian

H = −
N∑

i=1

(
JSiSi+1 + gµBBSz

i

)
(1)

where J denotes the nearest-neighbour interaction constant (positive for ferromagnetic
coupling), B is the external magnetic field applied along the z-direction, g is the corresponding
gyromagnetic ratio and N stands for the number of sites in the ring (N + 1 → 1). The spin
value Si may be uniform (S = 1 for the Ni12 molecule) or non-uniform (for the Mn6 cluster).
In the latter case, S = 5

2 for odd sites i and S = 1
2 for even sites i.

Using symmetry arguments, the quantum Hamiltonian (1) has been repeatedly diag-
onalized numerically for uniform spin S = 1/2 [13, 14] and more recently for uniform spin
S = 1 and non-uniform interactions [15], or for non-uniform S and uniform interactions [6].
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The most successful approach which has been developed for the polynuclear clusters is based
on the irreducible tensor operator (ITO) method [6].

In this paper we present two different exact simulation schemes yielding the thermo-
dynamic properties of model (1): the quantum transfer-matrix (QTM) method and the
diagonalization method exploiting the point-group symmetry. The QTM is adapted for use
with model (1) with a non-uniform spin variable. Although the single-ion anisotropy terms,
both longitudinal and transverse, and the non-uniform interactions could also be included, the
experimental data available to us do not justify this extra effort. As to our diagonalization
method, its primary advantage is that it implements the idea of applying the corresponding
shift operator to take into account the translational (or rotational) symmetry. This idea and
the group-theory arguments enable an effective coding to be achieved and provide a reduction
of the corresponding invariant subspaces to sizes smaller than that within the ITO method.
Finally, the numerical diagonalization of larger systems (1) can be accomplished here.

First we briefly describe the QTM simulation method for a finite ring with two alternating
spin values Si (i = 1, 2). Previously, a similar method was applied both to the macro-
scopic S = 1 Haldane-gap systems and to the S = 1 molecule-based chains with both
uniform and non-uniform couplings as well as single-ion anisotropy [16, 17]. It is not subject
to any statistical or systematic errors and, as far as the macroscopic chains are concerned,
the corresponding free energy can be directly evaluated from the largest eigenvalue of the
transfer matrix.

Within the QTM method we may calculate some classical approximants of the thermo-
dynamic functions and then recover the quantum regime, by taking the appropriate limit.
The series of classical approximants of the quantum thermal values can be found using the
general Suzuki–Trotter formula [16, 18]. Then the partition function can be calculated from
the expression

Z = lim
m→∞ Zm = lim

m→∞ Tr

[
N∏

i=1

e−βHi,i+1/m

]m

(2)

where the trace is taken over all of the configurations of the classical Ising variable Sij (the
eigenvalues of Sz

ij ) on a planar lattice of size N × 2m, m is an integer referred to as the
Trotter index and Hi,i+1 stands for the corresponding spin-pair Hamiltonian. Periodic boundary
conditions (N + 1 → 1) are imposed to account for the cyclic character of the physical objects.
The zero-field susceptibility is then evaluated from the second derivative of the free energy
with respect to the field.

For the system with non-uniform spin values, the numerical implementation of (2) is based
on two global transfer operators Wi (i = 1, 2) acting in the space HN which is a direct product
of N single-spin spaces Hi . The final expression is given by

Zm = Tr(W1W2)
m (3)

where

Wi = (ViP+
)N/2

i = 1, 2.

P and Vi (i = 1, 2) stand for a unitary shift operator and a local transfer operator, respectively
[18]. The explicit form of the operator Vi depends on the choice of the spin operators in
Hamiltonian (1) whereas that of P is universal.

The QTM technique described here can be applied to model (1) with both uniform and non-
uniform spin variables. In the case of a uniform spin variable S = 1 and N = 12 (appropriate
for Ni12), the computational cost of our technique would be relatively low compared with
that for Mn6. We emphasize that, in contrast to the case for the macroscopic limit, in our
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simulations the full trace in (3) has to be taken and we consider the index m large enough to
get estimates of the partition function (2) up to at least four decimal places.

In our diagonalization technique, the translational symmetry of the Hamiltonian (1) is
described in terms of the unitary shift operator P , which commutes with H and the z-component
of the total spin Sz. The eigenvalues of P are the N th-order roots of 1 and the corresponding
eigenvectors are complex linear combinations of the basis vectors. To avoid complex numbers
which increase the storage requirements, we have introduced the real operator 1

2 (P +P†). The
invariant subspaces of this operator have bigger dimensions but we can recover the reduction by
a factor of N , by including in our analysis the reflection symmetry. This leaves all previously
defined subspaces invariant and the associated operator R has the eigenvalues +1 and −1.
As Hamiltonian (1) commutes with rotations (translations) and reflections, the whole matrix
is factorized in blocks labelled by the following quantum numbers: the z-component of the
total spin Sz = 0, ±1, ±2, . . . ,±N ; the shift-symmetry eigenvalue k (0 � k � N/2); the
reflection eigenvalue R = ±1. The dimensions of blocks are determined by the computer
algorithm and for Sz = 0 are listed in table 1. In this way the largest invariant subspace has
the dimension 6166 for N = 12 and S = 1. The task of diagonalizing matrices of this size
can be carried out by present-day computers and the whole spectrum of Hamiltonian (1) can
be ‘exactly’ calculated. Afterwards, any thermodynamic function can be easily obtained at
an arbitrary temperature, using the standard formulae without an extra computational cost.
With the present technique, we have reached sizes of matrices as small as those for the group-
theoretical combinatorial approach [19]. Moreover, we have determined the corresponding
matrix elements allowing the subsequent diagonalization.

Table 1. Block dimensions of the Sz = 0 Hamiltonian submatrices classified according to the shift
index k and the reflection eigenvalue R.

k R Dimension

0 + 1 6166
6 −1 6163
1 ± 1 6136
2 ± 1 6158
3 ± 1 6140
4 ± 1 6160
5 ± 1 6136

As to the numerical results, the QTM approach is applied here to calculate the susceptibility
of the ring with alternating spins SA = 5

2 , SB = 1
2 . For a finite N = 12, the full

trace in (2) has to be taken into account and the size of the transfer matrix blows up to
[(2SA + 1)(2SB + 1)]N/2 = 2985 984. We have carefully checked the convergence of our
results with respect to the length in the Trotter direction and we compared the final estimates
with those available in table 4 of [6]. In order to reach the accuracy up to the fifth decimal
place for 2 � n = N/2 � 4 spin pairs, we had to carry out 200 � m � 900 steps in the
Trotter direction, depending on n and on temperature. For n = 5 and accuracy up to the fourth
decimal place, 50 steps were sufficient. To avoid using an excessive amount of supercomputer
time, we have mainly carried out the simulations up to n = 5 pairs.

To characterize [Mn(hfac)2NITPh]6, which consists of six spin pairs, we have estimated
the zero-field susceptibility from the extrapolations of the data for the values 2 � n � 5 (our
preliminary results for Mn6 have been published elsewhere [20]). A rather good convergence
in terms of n, sufficient for our purposes, has been obtained down to kBT /J = 0.05. Due to
the increasing quantum fluctuations, the uncertainty of our prediction at the lowest temperature
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has increased to of the order of 5%. For that reason, to verify our results, we have undertaken
QTM simulations of the system with the full number n = 6 of spin pairs at kBT /J = 0.05. The
corresponding numerically ‘exact’ estimate (up to the fourth decimal place) of the zero-field
susceptibility is plotted as the large full circle in figure 1, yielding an excellent confirmation
of the approximate calculations.

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300

�T

T[K]

e numerical data(J=kB=350K)

u QTM exact result

r experimental data r

r

r

r

r

r

r
r

r

r
r

r

r

r

r

r

r

r
rr

rr
rr

rrrrrrrr

e

e

e

e

e

e

e

e

eeee
u

Figure 1. The temperature dependence of the product T χ for Mn6 in molar units (emu K mol−1)
divided by the number of pairs. The experimental data are given by the small full circles and the
extrapolated QTM results by the open circles. The large full circle shows the numerically exact
QTM estimate at kBT /J = 0.05. The error bars are indicated where they exceed the size of the
symbol.

In view of the negligible spin–orbit coupling, we have fixed g = 2 and we have determined
the isotropic coupling constant J/kB = 350±10 K from the best fit to experiment. This result
is consistent with the existing qualitative estimates [1,4]. The temperature dependence of
our predictions of T χ for [Mn(hfac)2NITPh]6, expressed for the monomeric formula [4], is
displayed in figure 1. Numerical data plotted as open circles agree, within the error bars, with
the susceptibility measurements (small full circles) of the real compound and with the exact
value given by the large full circle.

The fitting procedure for Ni12 was performed in the framework of the isotropic model
(1), neglecting the crystal-field effects [2, 21, 22]. In figure 2, the experimental product T χ

(shown as full circles) for the Ni12 complex is plotted as a function of temperature. The data
are converted from those expressing the effective magnetic moment per formula unit [2]. The
best fit is achieved for the parameters J/kB = 8.5 ± 0.5 K, g = 2.23 ± 0.01, consistent with
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Figure 2. The temperature behaviour of T χ for Ni12 in molar units (emu K mol−1). The exp-
erimental data are plotted as full circles and our numerical estimates are shown by the full line.

those previously reported [2]. The theoretical curve is shown as the full line and it interpolates
very well between the measured values.

For the Ni12 aggregate the isotropic model (1) should be considered as a first approx-
imation. However, the measurements of the susceptibility were performed on the powder
sample at relatively high temperatures (kBT /J � 0.5), so the explicit anisotropy effects are
absent from the experimental results and an attempt to fit the data with more than one parameter
would be rather unrealistic. Our calculations yield strong evidence that the system in question
can be described by the ferromagnetic model (1) with a given coupling constant.

In conclusion, we have worked out two effective numerical approaches suitable for
characterizing the finite-temperature magnetic properties of high-nuclearity cyclic spin clusters
with large and alternating spins and we have also carried out simulations for the title compounds.

The QTM technique can provide numerically exact results if the dimensionality of the
multispin space allows the performing of the trace operation in the definition of the partition
function (3). This is the case both for Mn6 and for Ni12 clusters. If it was not feasible,
the technique could be still used after a change of the direction of transfer and subsequent
extrapolations.

Within the QTM method, a quantitative interpretation of the susceptibility measurements
for Mn6 has been accomplished here. We could follow this strategy for the Ni12 system,
but our algebraic group-theoretical approach led us to reduce the dimensionality of the total
spin-component subspaces of the isotropic model (1) at least down to 6166. At this level
of complexity, diagonalization has proved a very efficient way of achieving quantitative
characterization of the thermodynamic properties of the Ni12 complex, in agreement with
experiment.

We have also found the energy spectrum of Ni12. The ground state corresponds
to S = 12 and there is an excited state that is 46-fold degenerate at the energy level
E/kB = 0.2680, J/kB = 2.278 K. At the moment we cannot specify the excited state by
the total spin S, but this could be accomplished easily. Moreover, if any EPR or neutron
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scattering experiment was performed for Ni12, our diagonalization technique could be adapted
to take into account the anisotropy effects.

We would like to point out that the QTM approach is particularly effective and can be
exploited for other polynuclear clusters. After some modifications it will also be suitable for
application to systems with crystal-field anisotropy and alternating bonds, so the isotropic limit
for Ni12 could be relaxed as far as the thermodynamic properties are concerned.
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